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Performance Metrics and OptimizationPerformance Metrics and Optimization
• How are performance metrics used?

– Sensitivity studies
– System design
– Decision aid for strategic planning
– Adapting system over time
– Detecting instability; avoiding unstable performance
– Evaluating system reliability
– Design of experiments
– Mathematical modeling and parameter estimation
– And on and on….

• Most of above involve optimization
•• Claim:Claim: Impossible to have a performance metrics 

conference w/o seriously considering optimization!
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Search and Optimization Algorithms as Search and Optimization Algorithms as 
Part of Problem SolvingPart of Problem Solving

• There exist many deterministic and stochastic algorithms
• Algorithms are partpart of the broader solution
• Need clear understanding of problem structure, constraints, 

data characteristics, political and social context, limits of 
algorithms, etc.

• “Imagine how much money could be saved if truly 
appropriate techniques were applied that go beyond simple 
linear programming.” (Z. Michalewicz and D. Fogel, 2000) 
– Deeper understanding required to provide truly appropriate 

solutions; COTS usually not enough!
• Many (most?) real-world implementations involve stochastic 

effects
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Potpourri of Problems Using Stochastic Potpourri of Problems Using Stochastic 
Search and Optimization Search and Optimization 

• Minimize the costs of shipping from production facilities to 
warehouses

• Maximize the probability of detecting an incoming warhead 
(vs. decoy) in a missile defense system

• Place sensors in manner to maximize useful information
• Determine the times to administer a sequence of drugs for 

maximum therapeutic effect
• Find the best red-yellow-green signal timings in an urban 

traffic network
• Determine the best schedule for use of laboratory facilities 

to serve an organization’s overall interests
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Two Fundamental Problems of Interest Two Fundamental Problems of Interest 

• Let Θ be the domain of allowable values for a vector θ
• θ represents a vector of “adjustables”

– θ may be continuous or discrete (or both)
• Two fundamental problems of interest:

Problem 1.Problem 1. Find the value(s) of a vector θ ∈ Θ

that minimize a scalar-valued loss function L(θ)
— or —

Problem 2.Problem 2. Find the value(s) of θ ∈ Θ that solve the 
equation g(θ) = 0 for some vector-valued function g(θ)

• Frequently (but not necessarily) g(θ) = ∂ ∂θ θ( )L
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Continuous Discrete/
Continuous

Discrete

Three Common Types of Loss FunctionsThree Common Types of Loss Functions
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Stochastic Search and OptimizationStochastic Search and Optimization
• Focus here is on stochastic search and optimization:

A. Random noise in input information (e.g., noisy A. Random noise in input information (e.g., noisy 
measurements of measurements of LL((θθ))))

— and/or —
B. Injected randomness (Monte Carlo) in choice of B. Injected randomness (Monte Carlo) in choice of 
algorithm iteration magnitude/directionalgorithm iteration magnitude/direction

• Contrasts with deterministic methods
– E.g., steepest descent, Newton-Raphson, etc.
– Assume perfect information about L(θ) (and its gradients)
– Search magnitude/direction deterministic at each iteration

• Injected randomness (B) in search magnitude/direction can 
offer benefits in efficiency and robustness
– E.g., Capabilities for global (vs. local) optimization
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Some Popular Stochastic Search and Some Popular Stochastic Search and 
Optimization TechniquesOptimization Techniques

• Random search
• Stochastic approximation

– Robbins-Monro and Kiefer-Wolfowitz
– SPSA
– NN backpropagation
– Infinitesimal perturbation analysis
– Recursive least squares
– Many others

• Simulated annealing
• Genetic algorithms
• Evolutionary programs and strategies
• Reinforcement learning
• Markov chain Monte Carlo (MCMC)
• Etc.
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Effects of Noise on Simple Optimization ProblemEffects of Noise on Simple Optimization Problem



10

Example Search Path (2 variables): Steepest Example Search Path (2 variables): Steepest 
Descent with Noisy and NoiseDescent with Noisy and Noise--Free InputFree Input
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• Consider tracking problem where controller and/or system 
depend on design parameters θ
– E.g.: Missile guidance, robot arm manipulation, attaining 

macroeconomic target values, etc.
• Aim is to pick θ to minimize mean-squared error (MSE):

• In general nonlinear and/or non-Gaussian systems, not 
possible to compute L(θ)

• Get observedobserved squared error                    by running system

• Note that
– Values of y(θ), not L(θ), used in optimization of θ

Example of Noisy Loss Measurements: Example of Noisy Loss Measurements: 
Tracking ProblemTracking Problem

( )= −θ 2( ) actual output desired outputL E

≡ ⋅θ 2( )y

= = +⋅θ θ2( ) ( ) noisey L
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• Have credible Monte Carlo simulation of real system 
• Parameters θ in simulation have physical meaning in system

– E.g.: θ is machine locations in plant layout, timing settings in 
traffic control, resource allocation in military operations, etc.

• Run simulation to determine best θ for use in real system
• Want to minimize average measure of performance L(θ)

– Let y(θ) represent one simulation output (y(θ) = L(θ) + noise)

Example of Noisy Loss Measurements: Example of Noisy Loss Measurements: 
SimulationSimulation--Based Optimization Based Optimization 

θStochasticStochastic
optimizeroptimizer

y(θ)Monte Carlo Monte Carlo 
SimulationSimulation

inputs
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• Algorithm comparisons via number of evaluations of L(θ) or 
g(θ) (not iterations)
– Function evaluations typically represent major cost 

• Curse of dimensionality
– E.g.: If dim(θ) = 10, each element of θ can take on 10 values.  

Take 10,000 random samples: Prob(finding one of 500 best θ) 
= 0.0005

– Above example would be even much harder with only noisy 
function measurements

• Constraints
• Limits of numerical comparisons

– Avoid broad claims based on numerical studies
– Best to combine theory andand numerical analysis

Some Key Properties in Implementation and Some Key Properties in Implementation and 
Evaluation of Stochastic AlgorithmsEvaluation of Stochastic Algorithms
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Global vs. Local Solutions Global vs. Local Solutions 
• Global methods tend to have following characteristics:

– Inefficient, especially for high-dimensional θ
– Relatively difficult to use (e.g., require very careful selection of 

algorithm coefficients)
– Shaky theoretical foundation for global convergence

• Much “hype” with many methods (genetic algorithm [GA] 
software advertisements):
–– “…can handle the most complex problems, including “…can handle the most complex problems, including 

problems unsolvable by any other method.” problems unsolvable by any other method.” 
–– “…uses GAs to solve “…uses GAs to solve anyany optimization problem!”optimization problem!”

• But there are somesome mathematically sound methods
– E.g., restricted settingsrestricted settings for GAs, simulated annealing, and 

SPSA
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No Free Lunch TheoremsNo Free Lunch Theorems

• Wolpert and Macready (1997) establish several “No Free 
Lunch” (NFL) Theorems for optimization

• NFL Theorems apply to settings where parameter set 
and set of loss function values are finite, discrete sets
– Relevant for continuous θ problem when considering digital 

computer implementation
– Results are valid for deterministic and stochastic settings

• Number of optimization problems—mappings from to 
set of loss values—is finite

• NFL Theorems state, in essence, that no one search 
algorithm is “best” for all problems
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No Free Lunch TheoremsNo Free Lunch Theorems——Basic FormulationBasic Formulation
• Suppose that

Nθ = number of values of θ

NL = number of values of loss function 

• Then

( )  = number of loss functionsN
LN θ

• There is a finite (but possibly huge) number of loss 
functions

• Basic form of NFL considers average performance over all 
loss functions
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Illustration of No Free Lunch TheoremsIllustration of No Free Lunch Theorems
(Example 1.7 in (Example 1.7 in ISSOISSO))

• Three values of θ, two outcomes for noise free loss L
– Eight possible mappings, hence eight optimization problems

• Mean loss across all problems is same regardless of θ; 
entries 1 or 2 in table below represent two possible L
outcomes

21121221θ3

22211211θ2

21222111θ1

87654321
θ

Map



18

No Free Lunch Theorems (cont’d)No Free Lunch Theorems (cont’d)

• NFL Theorems state, in essence:

• In particular, if algorithm 1 performs better than algorithm 2 
over some set of problems, then algorithm 2 performs better 
than algorithm 1 on another set of problems

• NFL theorems say nothing about specific algorithms on 
specific problems

Averaging (uniformly) over all possible 
problems (loss functions L), all algorithms 
perform equally well

Overall relative efficiency of two algorithms 
cannot be inferred from a few sample problems
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Relative Convergence Rates of Deterministic Relative Convergence Rates of Deterministic 
and Stochastic Optimizationand Stochastic Optimization

• Theoretical analysis based on convergence rates of 
iterates        where k is iteration counter

• Let θ∗ represent optimal value of θ

• For deterministicdeterministic optimization, a standard rate result is:

• Corresponding rate with noisy measurementsnoisy measurements

• Stochastic rate inherently slower in theory and practice

ˆ ,kθ

O∗− = < <ˆ ( ), 0 1k
k c cθ θ

O∗
λ

⎛ ⎞− = < ≤⎜ ⎟
⎝ ⎠

1
2

1ˆ , 0k k
θ θ λ
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Concluding RemarksConcluding Remarks
• Stochastic search and optimization very widely used

– Handles noise in function evaluations
– Generally better for global optimization
– Broader applicability to “non-nice” problems (robustness)

• Some challenges in practical problems
– Noise dramatically affects convergence
– Distinguishing global from local minima not generally easy
– Curse of dimensionality
– Choosing algorithm “tuning coefficients”

• Rarely sufficient to use theory for standard deterministic 
methods to characterize stochastic methods 

• “No free lunch” theorems are barrier to exaggerated claims of 
power and efficiency of any specific algorithm 

• Algorithms should be implemented in context: “Better a 
rough answer to the right question than an exact answer 
to the wrong one” (Lord Kelvin)



21

Selected References on Stochastic Optimization Selected References on Stochastic Optimization 
• Fogel, D. B. (2000), Evolutionary Computation: Toward a New Philosophy of 

Machine Intelligence (2nd ed.), IEEE Press, Piscataway, NJ.
• Fu, M. C. (2002), “Optimization for Simulation: Theory vs. Practice” (with discussion 

by S. Andradóttir, P. Glynn, and J. P. Kelly), INFORMS Journal on Computing, vol. 
14, pp. 192−227.

• Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine 
Learning, Addison-Wesley, Reading, MA.

• Gosavi, A. (2003), Simulation-Based Optimization: Parametric Optimization 
Techniques and Reinforcement Learning, Kluwer, Boston. 

• Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, University of 
Michigan Press, Ann Arbor, MI. 

• Kushner, H. J. and Yin, G. G. (2003), Stochastic Approximation and Recursive 
Algorithms and Applications (2nd ed.), Springer-Verlag, New York.

• Michalewicz, Z. and Fogel, D. B. (2000), How to Solve It: Modern Heuristics, 
Springer-Verlag, New York. 

• Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, 
Simulation, and Control, Wiley, Hoboken, NJ.
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Contact Info. and Related Web SitesContact Info. and Related Web Sites

• james.spall@jhuapl.edu

• www.jhuapl.edu/SPSA (Web site on stochastic 
approximation algorithm)

• www.jhuapl.edu/ISSO (Web site on book 
Introduction to Stochastic Search and Optimization)


